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Compressive Signal Processing

Final Performance Report

Richard G. Baraniuk

1 Introduction

This is the final performance report for AFOSR Grant FA9550-07-1-0301 Compressive Signal Processing. We
begin by reviewing the project objectives, and then follow with a comprehensive summary of our most significant
achievements. We conclude with a list of publications supported by the grant, and a list of project personnel.

2 Project objectives

This project aimed to explore the foundations and applications of compressive sensing (CS) signal acquisition,
analysis, and processing. Specifically, we investigated:

1. Information scalability of CS The CS literature has focused almost exclusively on problems in signal
reconstruction, approximation, and estimation in noise. However, in many signal processing applications
(including most communications and many radar systems), signals are acquired only for the purpose of making
a detection or classification decision. We explored the information scalability of CS to a range of statistical
inference tasks. Tasks such as detection do not require a reconstruction of the signal, but only require estimates
of the relevant sufficient statistics for the problem at hand. We investigated how CS principles can achieve
direct detection/recognition from CS measurements without reconstructing the signal/image involved.

2. Distributed sensing and encoding using CS The CS literature has focused almost exclusively on prob-
lems involving single sensors, signals, or images. However, many important applications involve distributed
networks or arrays of sensors. We developed theory and algorithms for distributed compressive sensing (DCS)
that enable new signal acquisition and coding algorithms for multi-signal ensembles and sensor networks that
exploit both intra- and inter-signal correlation structures.

3. CS-based radar imaging and processing We sought to investigate how CS concepts can enable new
and simplified kinds of radar imaging hardware and algorithms, anticipating that our techniques will be
particularly appropriate for inexpensive networks/arrays of radar receivers.

3 Project accomplishments

3.1 Information scalability of CS

Our research in information scalability of CS followed three different threads. We first investigated the use of
compressive measurements for classification decisions, rather than a full reconstruction. The result of our work was
the smashed filter, a new tool for compressive classification and recognition. Our second focus was to apply signal
models in addition to existing sparsity models to further reduce the number of measurements required for CS. In
applying wavelet tree and block sparsity models, we were able to reduce the number of required measurements to
the order of signal sparsity. Finally, we pushed CS measurements to their lower limit. We investigated the case of
1-bit measurements, which preserve only the sign information of the random measurements. We demonstrated that
this approach performs significantly better compared to the classical compressive sensing reconstruction methods,
even as the signal becomes less sparse and as the number of measurements increases.
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3.1.1 The smashed filter

CS enables the reconstruction of a sparse or compressible image or signal from a small set of linear, non-adaptive
(even random) projections. However, in many applications, including object and target recognition, we are ulti-
mately interested in making a decision about an image rather than computing a reconstruction. We have proposed
a framework for compressive classification that operates directly on the compressive measurements without first
reconstructing the image. We dub the resulting dimensionally reduced matched filter the smashed filter. The first
part of the theory mapped traditional maximum likelihood hypothesis testing into the compressive domain; we
found that the number of measurements required for a given classification performance level does not depend on
the sparsity or compressibility of the images but only on the noise level. The second part of the theory applied
the generalized maximum likelihood method to deal with unknown transformations such as the translation, scale,
or viewing angle of a target object. We exploited the fact the set of transformed images forms a low dimensional,
nonlinear manifold in the high-dimensional image space. We found that the number of measurements required for a
given classification performance level grows linearly in the dimensionality of the manifold but only logarithmically in
the number of pixels/samples and image classes. Using both simulations and measurements from a new single-pixel
compressive camera, we demonstrated the effectiveness of the smashed filter for target classification using very few
measurements. The details of these results appear in [1].

3.1.2 Model based compressive sensing

Standard CS theory dictates that robust signal recovery is possible from M = O(K log(N/K)) measurements, but
we have demonstrated that it is possible to substantially decrease M without sacrificing robustness. We accom-
plished this reduction by leveraging more realistic signal models that go beyond simple sparsity and compressibility,
including structural dependencies between the values and locations of the signal coefficients. We introduced a
model-based CS theory that parallels the conventional theory and provides concrete guidelines on how to create
model-based recovery algorithms with provable performance guarantees. A highlight was the introduction of a new
class of structured compressible signals along with a new sufficient condition for robust structured compressible
signal recovery that we dub the restricted amplification property (RAmP). The RAmP is the natural counterpart
to the restricted isometry property (RIP) of conventional CS. To take practical advantage of the new theory, we
integrated two relevant signal models - wavelet trees and block sparsity - into two state-of-the-art CS recovery
algorithms and proved that they offer robust recovery from just M = O(K) measurements. Extensive numerical
simulations demonstrated the validity and applicability of our new theory and algorithms. The details of these
results appear in [2].

3.1.3 One-bit compressive sensing

Compressive sensing reconstruction has been shown to be robust to multi-level quantization of the measurements,
in which the reconstruction algorithm is modified to recover a sparse signal consistent to the quantization mea-
surements. We considered the limiting case of 1-bit measurements, which preserve only the sign information of the
random measurements. Although it is possible to reconstruct using the classical compressive sensing approach by
treating the 1-bit measurements as ±1 measurement values, we reformulated the problem by treating the 1- bit
measurements as sign constraints and further constraining the optimization to recover a signal on the unit sphere.
Thus the sparse signal was recovered within a scaling factor. We demonstrated that this approach performs sig-
nificantly better compared to the classical compressive sensing reconstruction methods, even as the signal becomes
less sparse and as the number of measurements increases. The details of these results appear in [3].

3.2 Distributed sensing and encoding using CS

Moving beyond the paradigm single-sensor compressive sensing, we developed theory and algorithms for compressive
sensing with multiple sensors. We considered inter-sensor dependencies and created a joint manifold model for
distributed compressive sensing. We also addressed the problem of bearing estimation of plane waves. We made
a distributed matrix completion framework that reduces inter-sensor communication while maintaining estimation
accuracy. Finally, we advanced CS theory in determining performance limits for distributed compressive sensing
with graphical model priors.
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3.2.1 Data fusion with joint manifolds

The emergence of low-cost sensing architectures for diverse modalities has made it possible to deploy sensor networks
that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios,
these networks acquire large amounts of very high-dimensional data. For example, even a relatively small network
of cameras can generate massive amounts of high-dimensional image and video data. One way to cope with such a
data deluge is to develop low-dimensional data models. Manifold models provide a particularly powerful theoretical
and algorithmic framework for capturing the structure of data governed by a low-dimensional set of parameters, as
is often the case in a sensor network. However, these models do not typically take into account dependencies among
multiple sensors. In response, we created a new joint manifold framework for data ensembles that exploits such
dependencies. We showed that joint manifold structure can lead to improved performance for a variety of signal
processing algorithms for applications including classification and manifold learning. Additionally, recent results
concerning random projections of manifolds enabled us to formulate a network-scalable dimensionality reduction
scheme that efficiently fuses the data from all sensors. The details of these results appear in [4].

3.2.2 Distributed bearing estimation via matrix completion

We considered bearing estimation of multiple narrow-band plane waves impinging on an array of sensors. For
this problem, bearing estimation algorithms such as minimum variance distortion-less response (MVDR), multiple
signal classification, and maximum likelihood generally require the array covariance matrix as sufficient statistics.
Interestingly, the rank of the array covariance matrix is approximately equal to the number of the sources, which is
typically much smaller than the number of sensors in many practical scenarios. In these scenarios, the covariance
matrix is low-rank and can be estimated via matrix completion from only a small subset of its entries. We proposed
a distributed matrix completion framework to drastically reduce the inter-sensor communication in a network
while still achieving near-optimal bearing estimation accuracy. Using recent results in noisy matrix completion, we
provided sampling bounds and show how the additive noise at the sensor observations affects the reconstruction
performance. We demonstrated via simulations that our approach sports desirable tradeoffs between communication
costs and bearing estimation accuracy. The details of these results appear in [5].

3.2.3 Performance limits for jointly sparse signals via graphical models

Existing CS framework has been proposed for efficient acquisition of sparse and compressible signals through
incoherent measurements. In previous work, we introduced a new concept of joint sparsity of a signal ensemble.
For several specific joint sparsity models, we demonstrated distributed CS schemes. Our most recent contributions
considered joint sparsity via graphical models that link the sparse underlying coefficient vector, signal entries, and
measurements. Our converse and achievable bounds established that the number of measurements required in the
noiseless measurement setting is closely related to the dimensionality of the sparse coefficient vector. Single signal
and joint (single-encoder) CS are special cases of joint sparsity, and their performance limits fit into our graphical
model framework for distributed (multi-encoder) CS. The details of these results appear in [6].

3.3 CS-based radar imaging and processing

CS principles have enabled new radar imaging hardware and algorithms. In exploring the intersection of CS theory
with radar applications, we first formalized our approach to 1-D CS radar and expanded our existing work to a 2-D
SAR CS imaging problem. We next applied the concepts of CS to a new, compressive RF receiver. This technology
could be incorporated into both radar, as well as more general wideband signal acquisition. And finally, for both
radar imaging and wider imaging problems, background subtraction is an important tool for target detection and
tracking. We used CS principles to directly recover background subtracted images, requiring fewer measurements
than if the entire scene needed to be reconstructed.

3.3.1 Compressive radar imaging

We created a new approach to radar imaging based on the concept CS. We demonstrated that CS has the potential
to make two significant improvements to radar systems: (i) eliminating the need for the pulse compression matched
filter at the receiver, and (ii) reducing the required receiver analog-to-digital conversion bandwidth so that it need
operate only at the radar reflectivity’s potentially low “information rate” rather than at its potentially high Nyquist
rate. These ideas could enable the design of new, simplified radar systems, shifting the emphasis from expensive
receiver hardware to smart signal recovery algorithms. The details of these results appear in [7].
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3.3.2 Compressive wide-band RF acquisition

CS exploits the sparsity present in many signals to reduce the number of measurements needed for digital acquisition.
With this reduction would come, in theory, commensurate reductions in the size, weight, power consumption, and/or
monetary cost of both signal sensors and any associated communication links. We have examined the use of CS
in environments where the input signal takes the form of a sparse combination of narrowband signals of unknown
frequencies that appear anywhere in a broad spectral band. We formulated the problem statement for such a
receiver and establish a reasonable set of requirements that a receiver should meet to be practically useful. The
performance of a CS receiver for this application was then evaluated in two ways: using applicable CS theory
and using a set of computer simulations carefully constructed to compare the CS receiver against the performance
expected from a conventional implementation. This has set the stage for future work that will use these results
to produce comparisons of the size, weight, and power consumption of a CS receiver against an exemplar of a
conventional design. The details of these results appear it [8].

3.3.3 CS for background subtraction

We have created a method to directly recover background subtracted images using CS, with applications to some
communication constrained multi-camera computer vision problems. We showed how to apply the CS theory to
recover object silhouettes (binary background subtracted images) when the objects of interest occupy a small portion
of the camera view, i.e., when they are sparse in the spatial domain. We casted the background subtraction as
a sparse approximation problem and provide different solutions based on convex optimization and total variation.
In our method, as opposed to learning the background, we learned and adapted a low dimensional compressed
representation of it, which is sufficient to determine spatial innovations; object silhouettes were then estimated
directly using the compressive samples without any auxiliary image reconstruction. We also considered simultaneous
appearance recovery of the objects using compressive measurements. In this case, we showed that it may be necessary
to reconstruct one auxiliary image. To demonstrate the performance of the proposed algorithm, we produced results
on data captured using a compressive single-pixel camera. We also illustrated that our approach is suitable for image
coding in communication constrained problems by using data captured by multiple conventional cameras to provide
2D tracking and 3D shape reconstruction results with compressive measurements. The details of these results
appear it [9].

4 Publications supported by this grant
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